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SUMMARY

It has been shown by Fiacco that convexity or concavity of the optimal value

of a parametric nonlinear programming problem can readily be exploited to calculate

global parametric upper and lower bounds on the optimal value function. The

approach is attractive because it involves manipulation of information normally

required to characterize solution optimality. We briefly describe a procedure

for calculating and improving the bounds as well as its extensions to generalized

convex and concave functions. Several areas of applications are also indicated.

INTRODUCTION

We are concerned here with parametric nonlinear programming problems of the
form

min f(x,t) s.t. g(x,t) > O, h(x,t) = 0 P(t)
X

where f is a real valued function, g and h are vector valued functions, and t is

a parameter vector. The optimal value function of P(t) is defined by

f*(t) = min { f(x,t): x 6 R(t) }

where R(t) is the feasible set of the problem P(t) given by

R(t) = { x : g(x,t) > O, h(x,t) = O }

In this paper we describe a procedure, originally proposed by Fiacco (refs.l,2),

for calculating piecewise-linear continuous global upper and lower parametric bounds

on the convex (or concave) optimal value f*. We also show how these bounds can be

improved in a systematic manner until a desired accuracy, as measured by the

maximal deviation from the optimal value over the interval of parameter values, is

achieved. Extensions of this approach to generalized convex and concave optimal

value functions are discussed as well and current experience with applications is
described.
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COMPUTABLE BOUNDS ON CONVEX OPTIMAL VALUE FUNCTIONS

Consider the parametric problem P(t) and assume that its optimal value

function, f*(t), is convex. This will be the case if P(t) is a jointly convex

program, i.e. if f is jointly convex in x and t, the components of g are jointly

concave in x and t, and those of h are jointly linear affine in x and t (ref. 3).

The assumptions on g and h can actually be generalized by requiring only that the

map R is convex (ref. 4).

Suppose now that we have evaluated f*(t) and its slope at two distinct values
t I and t_ of the parameter t, where (for simplicity) t is assumed to be a scalar.

Then, global definitional properties of convex functions immediately provide global

parametric continuous, piecewise-linear bounds via linear supports and linear

interpolation on the graph of f* over the line segment (tl,t2). This is illustrated

in figure i.

Practical implementation of bounds calculations requires only the information

provided by most standard nonlinear programming algorithms. In particular, the

solution of the problem P(t) as well as the associated optimal Lagrange multipliers

must be determined for two distinct parameter values. The Lagrange multipliers will

coincide with derivatives of f* in case f* is differentiable and with subgradients

of f* in case when f* is nondifferentiable and convex. In both cases the

multipliers can be used to compute the lower bounds on f*.

Clearly, if f* is convex on the convex set SCE r, then any supporting hyperplane

of the epigraph at any t G S provides a global lower bound on f* over S. Both

upper and lower bounds calculations obviously apply over any interval (tl,t 2) in S,

provided that f* is convex over (tI. t2) A standard technique for studying f*

over (t I, t2) is to consider t(a) = at I + (l-a)t 2 and view f as a fuction of the

scalar parameter a @ (0,i). This allows for the simultaneous pertubation of all

components ti of t, which are now linear affine funtions of the scalar parameter a.

A byproduct of this practical approach is the observation that if the feasible

point to set map R is convex then x(a) = ax I + (l-a)x 2 G R(t(a)) if x I G R(t I) and

x2 @ R(t2). This leads to the simple calculation of a feasible parametric vector

x(a) of a problem P(t(a)) whenever the,condition is met. Hence we also obtain the
upper bound T (a) = f(x(a), t(a)) on f (t(a)) over (tl,t2). Since the calculation

of x(a) does not depend on f, this does not require f to be convex. If f is,jointly
then f is convex and f (a) is a convex bound on or above f andconvex in (x,t), * " --

below the linear upper bound given in figure i.

The parametric bounds on the optimal value function f* described above were

constrained to one-dimensional perturbations of the parameter vector t. However,

it is a simple matter to extend these bounds to multi-dimensional perturbations of

t.

Suppose, for example, that f* is convex on the convex set SeE r and that we are

interested in bounds on f_ for t in some polyhedron M contained in S which is

determined by its extreme points t I, t2, ..., t_. To obtain these bounds we need

only to determine the values and subgradients of f* at _ points tI ..... t_. T_is

• i)information will be available if we compute optimal solutions x (t and Lagrange

multipliers for _ nonlinear programs P(tl), i=l,...,l, similarly to the case of

one-dimensional perturbations. If, in addition, R is a convex map, then we can

12



calculate a feasible parametric vector x(a), for the problem P(t(a)) with t(a) 6 M,
as a convex combination of _ solutions x*(ti), i=l .... ,i as well as a sharper convex

-- f*upper bound f (a) on .

The described approach for calculating parametric upper and lower bounds on
convex f* can be extended to the case of concave optimal value function f*. The
well known sufficient conditions for concavity of f* require that f be concave in t
for t G S and the feasible set R(t) = Nofor all t G S (that is R(t) must be fixed).
This result can be generalized to programswith perturbed feasible sets R(t) by
assuming that the mapR is concave (ref. 4).

If we now assume, similarly to the convex case, that f* is concave over the
interval (tl,t 2) and the values and slopes of f* are knownat two distin_points t 1
and t 2, then a linear interpolation on the graph of f* will provide a lower bound
while a piecewise linear upper bound will be determined by the slopes of f*. Figure
2 illustrates these bounds.

REFINEMENTSOFOPTIMALVALUEBOUNDS

In the previous section we described a procedure for calculating piecewise-
linear optimal value bounds on convex or concave f*(t) over the interval (tl,t 2) of
parameter values. Wealso showedthat a parametric feasible solution vector x(a),
a G (0,i), is an immediate by-product of this approach. This remarkably regular
behavior is exploitable in a number of waysas will be shownnext.

Consider a convex f*(t(a)), where t(a) = at I + (l-a)t 2, and view it as a
function of the scalar parameter a 6 (0,i) with upper and lower bounds on f* as
depicted in figure i. Supposethat we solve the program P(t(a*)) at some
intermediate value a* G (0,i). Then, this additional solution of P(t(a*)) enables

us $_ easily calculate sharper piecewise-linear continuous upper and lower boundson . Thesenew bounds on f* along with previous bounds are illustrated in figure
3.

Moreover, we can calculate a more accurate piecewise-linear continuous feasible
estimate x(a) of the parametric solution vector, which in this case is the linear
interpolation between contiguous optimal solutions of P(t(a)) at three values
a=0,a ,I. The feasible solution x(a) allows, in turn, the computation of a sharper
piece-convex continuous upper bound on f*, given by f (a) = f(x(a),t(a)).

Similar sharper piecewise-linear continuous upper and lower bounds can be
computedfor a concave optimal value function f* by solving an additional program
P(t(a*)) at someintermediate value a* G (0,i). The improved bounds will be
analogous to those depicted in figure 3.

It is clear from figure 3 that by repeatedly solving the program P(t(a)) at
intermediate values of a, the bounds on f* may be quickly and significantly improved.
The value a* of the parameter at which the problem was solved is the value where the
deviation between the current upper boundU and lower bound L, i.e., U(a) - L(a),
is the maximumover the considered interval (0,1). This is an appealing choice,
although other choices might,be dictated by other criteria or user interest; eg. it
might be important to know f (a) accurately only for certain subintervals or certain
choices of a.
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EXTENSIONS OF BOUNDS TO GENERALIZED CONVEX OPTIMAL VALUE FUNCTIONS

The approaches for calculating parametric optimal value bounds described

earlier can be extended in several ways to include much wider classes of parametric

programs. This means that optimal value bounds are much more widely applicable than

is apparent from the results of the previous sections.

The first extension is obtained by considering structured classes of generalized

convex and concave optimal value functions. Suppose that map R is convex and that

f is quasiconvex in (x,t) for t 6 (tl,t2). Then, f* is also quasiconvex (ref. 5)

and therefore a constant upper bound of f* given by max {f*(t I) f*(t2)} is

readily available as well as a sharper quasiconvex upper bound f (a) = f_(a),t(a)).

Additional classes of convex and nonconvex programs for which parametric upper

bounds on f* can be computed are those where the objective function and,

consequently, the optimal value function F* are strongly convex, strictly

quasiconvex and strictly pseudoconvex (ref. 5).

Analogous results can be obtained in the concave case. Assume, for example,

that the feasible set R is arbitrary and fixed and that f is quasiconcave in t for

t G (tl,t2). Then, quasiconcavity of f* follows (ref. 5) and min {f*(tl), f*(t2)}is

a constant lower bound on f*

The second extension is possible by considering generalized convex programs

which are transformable into standard convex programs. Consider program P(t) with a

convex feasible map R and an F-convex objective function f. That means that the

composed function fF (x,t) = F{f(x,t)} is convex in (x,t) where F is a continuous,

one-to-one function (ref. 6). Thus the optimal value function fF* of a modified

problem PF(t)

min fF(x,t) s.t. g(x,t) _> O, h(x,t) = 0 PF(t)

is convex and therefore piecewise-linear upper and lower bounds on fF , given by

L(t) j fF*(t) < U(t) can be calculated. Then, since fF*(t) = F{f*(t)}, one

immediately obt--ains the following bounds on f*(t) (provided that F is nondecreasing):

F -I {L(t)} < f*(t) < F-I {U(t)}. These bounds are in general nonlinear and

nonconvex but, nevertheless, can be calculated without difficulty once the program

PF(t) has been solved.

EXPERIENCE WITH APPLICATIONS

Several preliminary studies have been conducted to investigate some of the

more immediate computational and practical implications of the outlined approach for

generating global parametric upper and lower optimal value bounds. The procedure

for calculating optimal value bounds for both convex and concave optimal value

functions was implemented by Fiacco and Ghaemi (ref. 7) as an additional module in

the penalty-function based sensitivity-analysis computer program SENSUMT.

Fiacco and Ghaemi (ref. 8) studied a geometric programming model of a stream

water pollution abatement system and calculated bounds on the convex optimal value

(defined as the annual cost of operation) of an equivalent convex program. The

indicated water pollution bounds calculation involved the perturbation of a single

right-hand-side parameter, the allowable oxygen deficit level in the final reach of

the stream, that proved to be the most influential parameter in the prior sensitivity

study.
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Subsequently, Fiacco and Kyparisis (refs. 9, 10) utilized SENSUMT to calculate

bounds on the optimal value function for the same water pollution abatement model

when 30 (not all right-hand-side) most influential constraint parameters were

perturbed simultaneously. In this application, the optimal value function was not

convex in full neighborhood of the base value of the parameter vector. However,

it was possible to show that the restriction of f*(t) to the subset of parameters

involved in the desired perturbation is convex.

In another study involving the convex equivalent of a geometric programming

model of a power system energy model, to find the turbine exhaust annulus and

condenser system design that minimizes total annual fixed plus operating cost, Fiacco

and Ghaemi (ref. 11) used SENSUMT to obtain bounds on the optimal value function for

a variety of single objective function and constraint parameter changes. A novelty

of this anlysis is the exploitation of problem structure to calculate a nonlinear

lower bound on the optimal value function. In addition, parametric bounds are

computed on the optimal value which is concave for certain perturbations of

objective function parameters.
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Figure 3. Improved optimal value bounds on convex f*.
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